Kaimosi Friends University College Repository

Enhanced Performance of Hydrogen Peroxide Modified pozzolan-based Geopolymer for Abatement of Methylene blue from Aqueous Medium

Show simple item record

dc.contributor.author Shikuku, Victor Odhiambo
dc.contributor.author Hermann, Dzoujo Tamaguelon
dc.contributor.author Sylvain, Tome
dc.contributor.author Tchuigwa, Jean T
dc.contributor.author Spieß, Alex
dc.contributor.author Janiak, Christoph
dc.contributor.author Etoh, Marie Annie
dc.contributor.author Dina, David
dc.date.accessioned 2021-08-10T12:30:35Z
dc.date.available 2021-08-10T12:30:35Z
dc.date.issued 2021
dc.identifier.citation 1. Fatima Zohra Choumane, (2015) Elimination des métaux lourds et pesticides en solution aqueuse par des matrices argileuses, Thèse de Doctorat, Chimie de l’environnement. 2. Taylor, Publisher, Mark A. Brown, and Stephen C. De Vito. (2009) “Critical Reviews in Environmental Science and Technology Predicting Azo Dye Toxicity Predicting Azo Dye Toxicity.” (June 2013):37–41. 3. Ghosh, Dipa, and Krishna G. Bhattacharyya. (2002) “Adsorption of Methylene Blue on Kaolinite.” 20:295–300. 4. ALVARES A.B.C., C. DLAPER et S.A. PARSONS. (2013) Partial oxidation by ozone to remove recalcitrance from wastewaters – a review. Environ. Technol., 22, 409-427 5. Badawi, M. A., N. A. Negm, M. T. H. Abou Kana, H. H. Hefni, and M. M. Abdel Moneem.(2017). “Adsorption of Aluminum and Lead from Wastewater by Chitosan Tannic Acid Modified Biopolymers: Isotherms, Kinetics, Thermodynamics and Process Mechanism.” International Journal of Biological Macromolecules.doi: 10.1016/j.ijbiomac.2017.03.003. 27 6. Sharma, P., Kaur, H., Sharma, M., & Sahore, V. (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste 151–195. https://doi .org/10.1007/s10661-011-1914-0 7. US Department of the interior and US Geological Survey (2010). Minerals yearbook, metals and minerals, vol 1. Government Printing Office,Washington DC. 8. Billong N, Melo UC, Njopwouo N, Louvet F, Bonnet JP. (2013) Physicochemical characteristics of Some Cameroonian pozzolans for use in sustainable cement like materials. Mater Sci Appl 4:14–21. 9. Wamba, A. G. N., Lima, E. C., Ndi, S. K., Thue, P. S., Kayem, J. G., Rodembusch, F. S., dos Reis, G. S., & de Alencar, W. S. (2017) Synthesis of grafted natural pozzolan with 3 aminopropyltriethoxysilane: preparation, characterization, and application for removal of Brilliant Green 1 and Reactive Black 5 from aqueous solutions. Environmental Science and Pollution Research, 24(27), 21807–21820. . 10. Kofa, G. P., S. NdiKoungou, G. J. Kayem, and R. Kamga . (2015) “Adsorption of Arsenic by Natural Pozzolan in a Fixed Bed: Determination of Operating Conditions and Modeling.” Journal of Water Process Engineering 6:166–73. doi: 10.1016/j.jwpe.2015.04.006. 11. Gaston Fumba, Jean Serge Essomba, Guy Merlain Tagne, Julius Ndi Nsami, Placide Désiré Bélibi Bélibi and Joseph Ketcha Mbadcam. (2014) Equilibrium and Kinetic Adsorption Studies of Methyl Orange from Aqueous Solutions Using Kaolinite, Metakaolinite and Activated Geopolymer as Low Cost Adsorbents, Journal of Academia and Industrial Research (JAIR)Volume 3, 156–163. 12. Novais, R.M., Ascensão, G., Tobaldi, D.M., Seabra, M.P., Labrincha, J.A. (2018) Biomass Fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. J. Clean. Prod., 171, 783794. 13. Marouane, E., Saliha, A., Mohammed, E., Taibi, M. (2019) Preparation, Characterization, and Application of Metakaolin-Based Geopolymer for Removal of Methylene Blue from Aqueous Solution. J. Chem. https://doi.org/10.1155/2019/4212901. 14. Bai, Chengying, and Paolo Colombo. (2018) “Processing, Properties and Applications of Highly Porous Geopolymers: A Review.” Ceramics International 44(14):16103–18. doi:10.1016/j.ceramint.2018.05.219. 28 15. Singhal, Aditi; Gangwar, Bhanu P.; Gayathry, J.M. (2017). CTAB modified large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal. Applied Clay Science, 150(), 106–114.doi:10.1016/j.clay.2017.09.013 16. Sarkar, Chayan; Basu, Jayanta Kumar; Samanta, Amar Nath (2018). Experimental and kinetic study of fluoride adsorption by Ni and Zn modified LD slag based Geopolymer. Chemical Engineering Research and Design, S0263876218306221–. doi:10.1016/j.cherd.2018.12.006 17. Runtti, Hanna; Luukkonen, Tero; Niskanen, Mikko; Tuomikoski, Sari; Kangas, Teija; Tynjälä, Pekka; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla (2016). Sulphate removal over barium-modified blast furnace-slag geopolymer. Journal of Hazardous Materials, S0304389416305568–. doi:10.1016/j.jhazmat.2016.06.001 18. M. Sido-Pabyam, M. Gueye, J. Blin, E. Some (2009). Valorisation de résidus de Biomasse en Charbons actifs – Tests d’efficacité sur des bactéries et dérivés de pesticides. Revue Sud Sciences et Technologies, 17, 65-73. 19. Karadag, Dogan (2007). “Modeling the Mechanism, Equilibrium and Kinetics for the Adsorption of Acid Orange 8 onto Surfactant-Modified Clinoptilolite : The Application of Nonlinear Regression Analysis.” 74. doi: 10.1016/j.dyepig.2006.04.009. 20. Davidovits, J. (2008) Geopolymer Chemistry & Applications. Geopolymer Institute, Saint-Quentin. 21. Siyal, A. A., Shamsuddin, M. R., Khan, M. I., Rabat, E., Zulfiqar, M., Man, Z., Siame, J., & Azizli, K. A. (2018) A Review on Geopolymers as Emerging Materials for the. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2018.07.046 22. Sangwichien, C., G. L. Aranovich, and M. D. Donohue (2002). “Density Functional Theory Predictions of Adsorption Isotherms with Hysteresis Loops.” 206:313–20. 23. Khan, M. I., Min, T. K., Azizli, K., Sufian, S., Ullah, H., & Man, Z. (2015) Effective removal of methylene blue from water using phosphoric acid based geopolymers:Synthesis, characterizations and adsorption studies. RSC Advances, 5(75), 61410–61420. https://doi.org/10.1039/c5ra08255b. 24. Tahir S.S. and Naseem Rauf (2006). Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere.63, 1842-1848 Ceramics International, 44(14), 16103–16118. https://doi.org/10.1016/j. ceramint.2018.05.219 25. Panias, Dimitrios, Ioanna P. Giannopoulou, and Theodora Perraki (2007). “Effect of 29 Synthesis Parameters on the Mechanical Properties of Fly Ash-Based Geopolymers.” 301:246–54. doi: 10.1016/j.colsurfa.2006.12.064. 26. Maragkos, Ioannis, Ioanna P. Giannopoulou, and Dimitrios Panias (2009). “Synthesis of Ferronickel Slag-Based Geopolymers.” 22:196–203. doi: 10.1016/j.mineng.2008.07.003. 27. Rattanasak, Ubolluk, and Prinya Chindaprasirt (2009). “Influence of NaOH Solution on the Synthesis of Fly Ash Geopolymer.” Minerals Engineering 22(12):1073–78. doi: 10.1016/j.mineng.2009.03.022. 28. Tome, S., Etoh, M., Etame, J., & Kumar, S. (2020) Improved Reactivity of Volcanic Ash using Municipal Solid Incinerator Fly Ash for Alkali-Activated Cement Synthesis. Waste and Biomass Valorization, 11(6), 3035–3044. https://doi.org/10.1007/s12649- 019-00604-1 29. Karim, A. B., Mounir, B., Hachkar, M., Bakasse, M., & Yaacoubi, A. (2010) Élimination du colorant basique « Bleu de Méthylène » en solution aqueuse par l’argile de Safi. Revue Des Sciences de l’eau, 23(4), 375–388 .https://doi.org/10.7202/045099ar 30. Dotto, G. L., J. M. N. Santos, I. L. Rodrigues, R. Rosa, F. A. Pavan, and E. C. Lima. “Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin.” JOURNAL OF COLLOID AND INTERFACE SCIENCE (2015). doi: 10.1016/j.jcis.2015.01.046. 31. Shikuku, V. O., Kowenje, C. O., & Kengara, F. O. (2018) Errors in Parameters Estimation Using Linearized Adsorption Isotherms : Sulfadimethoxine Adsorption onto Kaolinite Clay. 23(4), 1–6. https://doi.org/10.9734/CSJI/2018/44087 32. Yao, C., & Chen, T. (2019) An improved regression method for kinetics of adsorption from aqueous solutions. Journal of Water Process Engineering, 31(May), 100840. https://doi.org/10.1016/j.jwpe.2019.100840 33. G. McKay, M.S. Otterburn, J.A. Aga. (1985) Fuller’s earth and fired clay as adsorbents for dyestuffs, Water, Air, Soil Pollut. 24, 307–322. 34. Ofomaja, Augustine E. (2008) “Sorptive Removal of Methylene Blue from Aqueous Solution Using Palm Kernel Fibre : Effect of Fibre Dose.” 40:8–18. doi: 10.1016/j.bej.2007.11.028. 35. Mariame Conde Asseng, Hermann Tamaguelon Dzoujo, Daniel David Joh Dina, Marie Annie Etoh, Armand Ngoungue Tchakounte, and Julius Ndi Nsami (2020). “Batch Studies for the Removal of a Hazardous Azo Dye Methyl Orange from Water through Adsorption on Regenerated Activated Carbons.” Journal of Materials Science and Engineering B 10(3):109–23. doi: 10.17265/2161-6221/2020.5-6.003. 30 36. Itodo AU, Itodo HU. (2010) Sorption energies estimation using Dubinin Radushkevich and Temkin adsorption isotherms. Life Sci 7:31–39. 37. Jia, L. I. U., Wang Hong-liang, L. Ü. Chun-xin, L. I. U. Han-fei, G. U. O. Zhi-xin, and Kang Chun-li (2013). “Water Through Modified Diatomite.” 29(2007):3–6. doi: 10.1007/s40242-013-2504-1. 38. M.I. Temkin, V. Pyzhev (1940). Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim. URSS 12, 327–356. 39. Freundlich H. (1906) on adsorption in solution. Z. Physik. Chem., vol. 57, pp385-471. 40. R. Sips (1948), on the structure of a catalyst surface, J. Chem. Phys., 16, 490. 41. Anagho S., Tchuifon R., Ndifor-Angwafor G., Ndi J., Ketcha J., Nchare M. (2013) "Nickel adsorption from aqueous solution onto kaolinite and metakaolinite: kinetic and equilibrium studies." International Journal of Chemistry, 4, 1-7. 42. Shikuku V.O., and Kimosop, J. (2020) efficient removal of sulfamethoxazole onto sugarcane bagasse-derived biochar: two and three-parameter isotherms, kinetics and thermodynamics. S. Afr. J. Chem., 73, 111-119. en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/91
dc.description.abstract Pozzolan-based eco-adsorbents were synthesized by geopolymerization with addition of hydrogen peroxide (H2O2) with mass ratios 0% (GP0) and 1% (GP1) and the products used to sorb cationic methylene blue (MB) dye from water. The chemical composition, textural properties, mineral composition, surface functions, as well as morphology and internal structure of these samples were determined by the X-ray fluorescence, adsorption of nitrogen by the B.E.T (Bruamer Emmet Teller) method, X-ray diffraction, Fourier Transformed Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The effects of contact time, dye initial concentration, adsorbent dosage, pH and temperature were examined and are herein reported. Incorporation of 1% H2O2 increased the specific surface area from 4.344 to 5.610 m2/g representing ~29% increase in surface area. This translated an increase in the MB adsorption capacity by 15 orders of magnitude from 24.4 to 366.2 mg/g for GP0 and GP1, respectively. The adsorption rates of methylene blue on the two geopolymers were best described by the pseudo-second order kinetic model. The adsorption equilibrium data were best described by the Sips and Freundlich isotherms models for GP0 and GP1, respectively. Thermodynamically, it was determined that the adsorption of methylene blue onto GP0 and GP1 is a physical and endothermic process. The results show that incorporation of low amount of 2 hydrogen peroxide into pozzolan-based geopolymers increases their adsorption capacity for methylene blue dye stupendously while preserving the surface chemistry. en_US
dc.language.iso en en_US
dc.subject Pozzolan, eco-adsorbents, geopolymers, adsorption, methylene blue en_US
dc.title Enhanced Performance of Hydrogen Peroxide Modified pozzolan-based Geopolymer for Abatement of Methylene blue from Aqueous Medium en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account