Kaimosi Friends University Repository

Ab initio study on Quasi-Binary Acetonitriletriide Sr3[C2N]2

Show simple item record

dc.contributor.author Sifuna, James
dc.contributor.author . Manyali, George S
dc.contributor.author Wabululu, Elicah
dc.contributor.author Songa, Carolyne
dc.contributor.author Otieno, Alloysious
dc.contributor.author Sironik, Stephen
dc.date.accessioned 2020-01-20T09:30:43Z
dc.date.available 2020-01-20T09:30:43Z
dc.date.issued 2020-01-07
dc.identifier.citation 1 George S. Manyali and James Sifuna. AIP Advances 9, 125029 (2019). 2 G. S. Manyali, R. Warmbier, A. Quandt, and J. E. Lowther. Comput. Mater. Sci. 69 (2013). 3 G. S. Manyali, R. Warmbier, and A. Quandt. Comput. Mater. Sci. 79 (2013). 6 4 G. S. Manyali, R. Warmbier, and A. Quandt. Comput. Mater. Sci. 96 (2015). 5 William P. Clark and Rainer Niewa. Z. Anorg. Allg. Chem. 645 (2019). 6 Ute Berger and Wolfgang Schnick. J. Alloys Compd. 206 (1994). 7 K. B. Sterri, C. Besson, A. Houben, P. Jacobs, M. Hoelzel, R. Dronskowski. New J. Chem.,40 (2016). 8 Michael Becker and Martin Jansen. Acta Crystallogr., Sect. C, 570 (2001). 9 R. K. Zheng, Hui Liu, Y. Wang, and X. X. Zhang. Journal of Applied Physics 96, 5370 (2004). 10 William P. Clark, Andreas K¨ohn, and Rainer Niewa. Angew. Chem. Int. Ed. 2020, 59, (2019). 11 Sifuna, J., Manyali, G., Sakwa, T. and Manasse, K. Journal of Multidisciplinary Engineering Science and Technology 4, 2 (2017). 12 Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon and Daniel Sanchez-Portal. J. Phys.: Condens. Matter 14 2745 (2002). 13 Leonard Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982). 14 N. Troullier and Jos Lus Martins, Phys. Rev. B 43, 1993 (1991). 15 Vladimir I Anisimov, F Aryasetiawan and I Lichtenstein, J. Phys.: Condens. Matter 9 767 (1997). 16 Hendrik J. Monkhorst and James D. Pack, Phys. Rev. B 13, 5188 (1976). 17 Juana Moreno and Jos M. Soler, Phys. Rev. B 45, 13891 (1992). 18 John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 19 F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944). 20 W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig (1928). 21 A. Reuss, Z. Angew. Math. Mech. 9 (1929). 22 R. Hill, Proc. Phys. Soc., Sect. A 65 (1953). 23 Zhi-jian Wu, Er-jun Zhao, Hong-ping Xiang, Xian-feng Hao, Xiao-juan Liu, and Jian Meng, Phys. Rev. B 76, 054115 (2007). 24 M. Born and K. Huang, Oxford : Clarendon Press (1954). 25 M.Hebbache, Solid State Communications. 110,10 (1999). 26 N. Wang, W.Y. Yu, B.-Y. Tang, L.M. Peng, and W.J, J. Phys. D: Appl. Phys. 41 195408 (2008). 27 S. Pugh, Philosophical Magazine, vol. 45, 367 (1954). 28 Private communications with Prof. Rainer Niewa, en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/48
dc.description.abstract We report using density functional theory (DFT), the ground-state properties of the recently synthesized and characterized Sr3[C2N]2 crystal. The nearly colorless, centrosymmetric Sr3[C2N]2 crystallizes in a monoclinic unit cell with a P21/c space group (No.14) and many of its properties remain unknown basing on the fact that it’s a latecomer in the field. The goal of this study is to fill this information gap through a theoretical prediction. The calculated structural properties were comparable to those obtained by an experimental group led by Clark and co-workers thus giving us extra confidence in the accuracy of our DFT computations on Sr3[C2N]2. We employed the same approach in calculating mechanical and dynamical stabilities together with the electronic density of states of Sr3[C2N]2. No imaginary phonon modes were observed and thus implying dynamical stability. The thirteen elastic constants calculated passed the stability criteria of a monoclinic system. From the computed Poisson’s ratio (η=0.27) and G/B=0.54, our calculations predict Sr3[C2N]2 being brittle and not able to withstand high-pressure applications. To analyze the chemical bonding mechanism, the corresponding total density of states (TDOS) and partial DOS were plotted. The top of the valence band (VB) mainly consists of C 2p states N 2p, N 2s and a slight admixture of Sr 5s states. The bottom of the conduction band (CB) shows a strong hybridization between C 2p, N 2p, N 2s, and Sr 5s states, yielding a bandwidth of 7.18 eV in the entire conduction band. We were able to obtain a tunable electronic gap of 2.65 eV in Sr3[C2N]2. The authors herein note that Sr3[C2N]2 falls in an unknown family of pseudonitrides that may possess novel physical and chemical properties if combined with suitable cations like transition metals. Material scientists are encouraged to scout in this new class of pseudonitrides for future technologies. en_US
dc.language.iso en en_US
dc.relation.ispartofseries :2001.01488;
dc.subject DFT, Sr3[C2N]2, phonon, elastic, pdos en_US
dc.title Ab initio study on Quasi-Binary Acetonitriletriide Sr3[C2N]2 en_US
dc.type Preprint en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account