dc.identifier.citation |
[1] Bray,F., Ferly,J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jermal, A. Global cancer Statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancer in 185 Countries. CA : a cancer journal for clinicians, 68(6):394-424, 2018. [2] Brisson, M., Kim J. J., Canfell, K., Drolet, M., Gingras, G., Burger, E.A., Martin, D., Simms, K.T., B´enard, E., Boily, M.-C. Impact of ´ Human Papillomavirus vaccination and Cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middleincome countries. The Lancet, 395(10224):575-590, 2020 [3] Centres for Disease Control and Prevention. Human Papillomavirus (HPV) Questions and Answers; 2018. https://www.cdc.gov/parents/questions - answers. html. Accessed August 21, 2018. [4] Chastillo-Chavez, C. & Brauer, F. Mathematical models in population biology and epidemiology. Springer, New York, 2002. [5] Tokose D. D. Mathematical model of cervical cancer due to Human Papillomavirus dynamics with vaccination in case of Gamo zone Arbaminch Ethiopia. Msc Thesis, Haramaya University, Haramaya, 2022. [6] Diekmann, O., Heesterbeek, J.A.P.,Metz, J,A,J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Mathematical Biology., Vol. 28, 365-382, 1990. [7] Saldana F, J. Acamacho-Guterre, G Villavicencio-Pulido, J VelascoHernandez Modelling the transmission dynamics and vaccination strategies for HPV infection: An Optimal control Approach. Baque centre for Applied mathematics, Bilbao, Spain., 2022. [8] Geoffrey P.G., Jane, J.K., Katherine, F. and Sue, J. G. Modelling the impact of Human Papillomavirus vaccines on cervical cancer and screening programs. Science Direct-Elsevier, Vaccine, 24S3, S3/178- S3/186, 2006. [9] Goshu M and Abebe, Mathematical modelling of cervical cancer vaccination and treatment effectiveness. Authorea preprints,2022. [10] Gultekin, M., Ramirez, P.T., Broutet, N., and Hutubessy, R. World Health Organization call for action to elimination Cervical cancer globally, 2020. [11] Hong, A.M., Grulich, A.E., Jones, D., Lee, C.S., Garland, S.M., Dobbins, T.A., Clark, J.R. Harnett, G.B., Milross, C.G., OBrien, C. J. ´ Squamous Cell Carcinoma of the oropharynx in australian males induced by human papillomavirus vaccine targets. Vaccine, 28(19):3269- 3272, 2010. 67[12] Jit, M., Chairman, R., Hughes, O., and Choi, Y. H. Comparing bivalent and quadrivalent HPV vaccines: economic evaluation based on transmission model Bnj, Vol 343, 2011. [13] Kai Zhang, Xinwei Wang, Hua Liu, Yunpeng Ji, Quiwei Pan, Yumei Wei, Ming Ma. Mathematical analysis of a human papillomavirus transmission model with vaccination as screening. Mathematical Biosciences and Engineering, Vol 5, pp 5449 - 5476, 2020. [14] Allali K. Stability analysis and optimal control of HPV infection model with early-stage cervical cancer. Laboratory of mathematics and Applications, 2020. [15] Zhang K, Y Ji, Q Pan, Y Wei, Y Ye, H Liu, ”Sensitivity Analysis and optimal treatment control for a mathematical model of HPV infection.” AIMS Mathematics, Vol.5, Issue 3, PP2646 -2670, 2020. [16] Lee s.L and Tameru M.A , A mathematical model of Human Papillomavirus(HPV) in the united states and its impact on cervical cancer Journal of cancer, Vol. 3 pp 262 - 268, 2012. [17] Malia M, Isaac C, David M. Modelling the Impact of spread of Human Papillomavirus infections under vaccination in Kenya. EJ-MATH, European Journal of mathematics and statistics. PP 17-26, Vol3 /Issue 4/ 2022. [18] Murray, J.D. Mathematical Biology. Springer, New York, 1991. [19] Ndii M.Z, Murtono M, Sugiyanto S,. Mathematical modelling of cervical cancer treatment using Chemotherapy drug. Biology, medicine and natural product chemistry, Vol 8, Number 1, pp 11 - 15, 2019. [20] Nogueira-Rodrigues A. Human Papillomavirus vaccination in Latin America: global challenges and feasible solutions. American Society of Clinical Oncology Educational Book, 39: e45-52, 2019. [21] Opoku O.K.N., Nyabadza F. and Ngarakana-Gwasira E. Modelling Cervical cancer due to Human Papillomavirus infection in the presence of vaccination. Open Journal of mathematical Science. DOI : 10.30538/oms.0065, 2019. [22] PDQ Adult Treatment Editorial Board. Cervical Cancer Treatment (PDQ), Health professional Version, 2022. [23] Pongsumpun.P,. Mathematical model of cervical cancer due to Human Papillomavirus infection. Mathematical methods in science and Engineering pp 152 - 162 , 2014. [24] Sharomi, O., Malik, T. Optimal Control in epidemiology. Ann Oper Res, Vol. 251, 55-71, 2017. [25] Simms K.T., Steinberg, J., Caruana, M., Smith, M.A., Lew, J:-B., Soerjomataram, I., Castle, P.E., Bray, F., and Canfell, K. Impact of scaled up Human Papillomavirus vaccination and Cervical screening 68and the potential for global elimination of cervical cancer in 181 countries, 2020-99: a modelling study. The Lancet Oncology, 20(3):394-407, 2019. [26] TSN Asih, S Lenhart, S Wise, L Aryati, F Adi-Kusumo, MS Hardianti, J Forde, ”The dynamics of HPV Infection and Cervical cancer cells.” Bulletin of mathematical Biology manuscript. 2016 [27] Usman S., Adamu I. I. and Tahir. Mathematical model on the impact of natural immunity, vaccination, screening and treatment on the dynamics of Human Papillomavirus infection and cervical cancer. Katsina journal of Natural and Applied Sciences Vol. 5 No. 2 September, (ISSN : 2141- 0755), 2016. [28] Van den Driessche P. and Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180; 29-48, 2002. [29] Victor M. B. Optimal Control. Scholarpedia, 3(1): 5354, 2008. [30] WHO/ICO. Human Papillomavirus and related Cancers in Kenya. Summary Report 2010. [internet]2010. Available from: who.int/hpvcentre. [31] Olaniyi S. and O. S. Obabiyi. Qualitative analysis of malaria dynamics with non-linear incidence function. Applied Mathematical Sciences, 8(78):3889-3904, 2014. [32] Barbu,V. Precupanu, T. Convexity and Optimization in Banach Spaces,4th ed.: Springer: Dordrecht, The Netherlands, 2010. [33] Lukes. D.L. Differential equations :Classical to Controlled.Academic Press, New York, USA, 1982. [34] Fleming, W. H.,and Rishel, R. W. Deterministic and stochastic optimal control.Springer Science and Business Media,2012. [35] Perko L., Differential Equations and Dynamical Systems .3rd ed., Applied Mathematics, Springer Verlag, New York, (2000). |
en_US |