dc.identifier.citation |
] Abubakr M, Abbas Z, Naz A, Khalil H, Khan MA, Kim H, Khan K, Ouladsmane M, Rehman S, Kim D-k, et al. First principles quantum analysis of structural, electronic, optical and thermoelectric properties of XCu2GeQ4 (X=Ba, Sr and Q=S, Se) for energy applications. Opt Quantum Electron 2023;55(10):1–21. [2] Rached Y, Caid M, Merabet M, Benalia S, Rached H, Djoudi L, Mokhtari M, Rached D. A comprehensive computational investigations on the physical properties of TiXSb (X: Ru, Pt) half-Heusler alloys and Ti2RuPtSb2 double half-Heusler. Int J Quantum Chem 2022;122(9):e26875. [3] Diaf M, Righi H, Rached H, Rached D, Beddiaf R. Ab initio study of the properties of Ti2PdFe (Ru) Sb2 double half-heusler semiconducting alloys. J Electron Mater 2023;52(10):6514–29. [4] Huang L, Zhang Q, Yuan B, Lai X, Yan X, Ren Z. Recent progress in half-Heusler thermoelectric materials. Mater Res Bull 2016;76:107–12. [5] Mehtougui N, Bendahma F, Rached Y, Mana M, Rached D, Caid M, Boukortt A, Ghalem Y. Novel semiconductor compounds XZrZ (X=Ni, Cu and Z=C, B) suitable for clean energy in optoelectronic and thermoelectric devices. Comput Condens Matter 2022;32:e00730. [6] Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7(2):105–14. [7] Caballero-Calero O, Ares JR, Martín-González M. Environmentally friendly thermoelectric materials: High performance from inorganic components with low toxicity and abundance in the earth. Adv Sustain Syst 2021;5(11):2100095. [8] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011;473(7345):66–9. [9] Zhu T, Fu C, Xie H, Liu Y, Zhao X. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv Energy Mater 2015;5(19):1500588. [10] Rached Y, Caid M, Rached H, Merabet M, Benalia S, Al-Qaisi S, Djoudi L, Rached D. Theoretical insight into the stability, magneto-electronic and thermoelectric properties of XCrSb (X: Fe, Ni) half-Heusler alloys and their superlattices. J Supercond Nov Magn 2022;35(3):875–87. [11] Rached D, Boumia L, Caid M, Rached Y, Ait Belkacem A, Rached H, Merabet M, Benalia S. The half-metallic ferromagnetic and thermoelectric responses of the potential thermo-spintronic compounds CrTiRhZ (Z: Al or Si) QHA. Indian J Phys 2023;1–10. [12] Yu J, Xing Y, Hu C, Huang Z, Qiu Q, Wang C, Xia K, Wang Z, Bai S, Zhao X, et al. Half-heusler thermoelectric module with high conversion efficiency and high power density. Adv Energy Mater 2020;10(25):2000888. [13] Graf T, Felser C, Parkin SS. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem 2011;39(1):1–50. [14] Gruhn T. Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys Rev B 2010;82(12):125210. [15] Xia K, Hu C, Fu C, Zhao X, Zhu T. Half-Heusler thermoelectric materials. Appl Phys Lett 2021;118(14). [16] Yu J, Xia K, Zhao X, Zhu T. High performance p-type half-Heusler thermoelectric materials. J Phys D: Appl Phys 2018;51(11):113001. [17] Lekhal A, Benkhelifa F, Mecabih S, Abbar B, Bouhafs B. Structural and electronic properties of non-magnetic intermetallic YAuX (X=Ge and Si) in hexagonal and cubic phases. Bull Mater Sci 2016;39:195–200. [18] Erden Gulebaglan S, Kilit Dogan E. A comparison study of the structural electronic, elastic and lattice dynamic properties of ZrInAu and ZrSnPt. Z Natforsch A 2021;76(6):559–67. [19] Wafula JW. Structural, elastic, electronic, optical and thermal properties of YMAu (M=Si or Ge or Sn) Half-Heusler compounds; A DFT study. Results Mater 2023;100413. [20] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77(18):3865. [21] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13(12):5188. [22] Madsen GK, Carrete J, Verstraete MJ. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput Phys Comm 2018;231:140–5. Results in Physics 61 (2024) 107747 8 J.W. Wafula et al. [23] Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys: Condens Matter 2017;29(46):465901. [24] Youcef A, Bettahar N, Cheref O, Eddine S, Rached D, Benkhettou N, Bezzerga D, et al. Topologically nontrivial phase in Na2CuX (X=As, Sb, Sn and Bi) full Heusler compounds: Insights from DFT-based computer simulation. Rev Mex Fís 2023;69(2 Mar-Apr):020501. [25] Boughena A, Benalia S, Cheref O, Bettahar N, Rached D. A first-principles investigation of band inversion in topologically nontrivial Na2AgX (X=As, Sb and Bi) full Heusler compounds. 2021, arXiv preprint arXiv:2106.13184. [26] Yusuf M, Saouma FO, Manyali GS, Wafula JW, Pembere A. First principles study of thermo-physical and opto-electronic properties of NaCuTe, NaCuSe and NaScSn as potential photovoltaics. Physica B 2024;415954. [27] Yusuf M, Saouma FO, Manyali GS, Wafula JW, Huxley O. DFT investigation of structural, elastic, electronic, thermodynamic and optical properties of KCuZ (Z=Te, Se) solar absorbers. Solid State Commun 2023;370:115219. [28] Mahmood Q, Ghrib T, Rached A, Laref A, Kamran M. Probing of mechanical, optical and thermoelectric characteristics of double perovskites Cs2GeCl/Br6 by DFT method. Mater Sci Semicond Process 2020;112:105009. [29] Berri S. Thermoelectric properties of A2BCl6: a first principles study. J Phys Chem Solids 2022;170:110940. [30] Asghar M, Zanib M, Khan MA, Niaz S, Noor N, Dahshan A. Tuning of the bandgap of Rb2ScAgX6 (X=Cl, Br, I) double perovskites through halide ion replacement for solar cell applications. Mater Sci Semicond Process 2022;148:106819. [31] Moço D, Malta JF, Santos LF, Lopes EB, Gonçalves AP. Thermoelectric properties of nickel and selenium co-doped tetrahedrite. Materials 2023;16(3):898. [32] Bouhmaidi S, Uddin MB, Pingak RK, Ahmad S, Rubel MHK, Hakamy A, Setti L. Investigation of heavy thallium perovskites TlGeX3 (X=Cl, Br and I) for optoelectronic and thermoelectric applications: A DFT study. Mater Today Commun 2023;37:107025. [33] Haque E, Hossain MA. Origin of ultra-low lattice thermal conductivity in Cs2BiAgX6 (X=Cl, Br) and its impact on thermoelectric performance. J Alloys Compd 2018;748:63–72. |
en_US |