Kaimosi Friends University Repository

Valorization of solid waste incinerator fly ash by geopolymer production for removal of anionic bromocresol green dye from water: Kinetics, isotherms and thermodynamics studies

Show simple item record

dc.contributor.author Eugene, K. Owino
dc.contributor.author Victor, O. Shikuku
dc.contributor.author Wilfrida, N. Nyairo
dc.contributor.author Chrispin, O. Kowenje
dc.contributor.author Benton, Otieno
dc.date.accessioned 2023-10-13T08:23:44Z
dc.date.available 2023-10-13T08:23:44Z
dc.date.issued 2023
dc.identifier.citation 1] S. Tome, H. Dzoujo, V. Shikuku, S. Otieno, Synthesis, characterization and application of acid and alkaline activated volcanic ash-based geopolymers for adsorptive remotion of cationic and anionic dyes from water, Ceram. Int. 47 (15) (2021) 20965–20973, https://doi.org/10.1016/j.ceramint.2021.04.097. [2] D. Hermann, V.O. Shikuku, S. Tome, S. Akiri, Synthesis of pozzolan and sugarcane bagasse derived geopolymer-biochar composites for methylene blue sequestration from aqueous medium, J. Environ. Manag. 318 (4) (2022), 115533, https://doi. org/10.1016/j.jenvman.2022.115533. [3] V.O. Shikuku, S. Tome, T.H. Dzoujo, G. Tompsett, M. Timko, Rapid adsorption of cationic methylene blue dye onto volcanic ash-metakaolin based geopolymers, Silicon 14 (15) (2022) 9349–9359, https://doi.org/10.1007/s12633-021-01637-9. [4] A.A. Siyal, M.R. Shamsuddin, M.I. Khan, N.E. Rabat, M. Zulfiqar, Z. Man, J. Siame, K.A. Azizli, A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes, J. Environ. Manag. 224 (2018) 327–339, https://doi.org/ 10.1016/j.jenvman.2018.07.046. [5] Q. Qiu, X. Jiang, G. Lv, Z. Chen, S. Lu, M. Ni, J. Yan, X. Deng, Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment, Powder Technol. 335 (2018) 156–163, https://doi.org/10.1016/j.powtec.2018.05.003. [6] I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah, I. Khan, Review on Methylene Blue: its properties, uses, toxicity and photodegradation, Water 14 (2022) 242. https://doi.org/ 10.3390/w14020242. [7] L. Liu, Z. Chen, J. Zhang, D. Shan, Y. Wu, L. Bai, B. Wang, Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: a review, J. Water Process Eng. 42 (2021), 102122, https://doi.org/10.1016/j.jwpe.2021.102122. [8] M.A. Badawi, N.A. Negm, M.T.H. Abou Kana, H.H. Hefni, M.A. Moneem, Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism, Int. J. Biol. Macromol. 99 (2017) 465–476, https://doi.org/10.1016/j. ijbiomac.2017.03.003. [9] A. Shokrollahi, A. Alizadeh, Z. Malekhosseini, M. Ranjbar, Removal of bromocresol green from aqueous solution via adsorption on Ziziphus nummularia as a new, natural, and low-cost adsorbent: kinetic and thermodynamic study of removal process, J. Chem. Eng. Data 56 (10) (2011) 3738–3746, https://doi.org/10.1021/ je200311y. [10] E. Ngeno, E. Mbuci, M. Necibi, V.O. Shikuku, C. Olisah, R. Ongulu, H. Matovu, P. Ssebugere, A. Abushaban, M. Sillanpaa, Sustainable re-utilization of waste materials as adsorbents for water and wastewater treatment in Africa: recent studies, research gaps, and way forward for emerging economies, Environ. Adv. 9 (2022), 100282, https://doi.org/10.1016/j.envadv.2022.100282. [11] D. Hermann, S. Tome, V.O. Shikuku, J.B. Tchuigwa, A. Spieß, C. Janiak, M.A. Etoh, Enhanced performance of hydrogen peroxide modified pozzolan-based geopolymer for abatement of methylene blue from aqueous medium, Silicon 14 (10) (2021) 5191–5206, https://doi.org/10.1007/s12633-021-01264-4. [12] M.A. Al-Ghouti, M. Khan, M.S. Nasser, K. Al Saad, O. Ee, Heng, Application of geopolymers synthesized from incinerated municipal solid waste fly ashes for the removal of cationic dye from water, PLoS One 15 (11) (2020), e0239095, https:// doi.org/10.1007/journal.pone.0239095. [13] M. Margallo, M.B.M. Taddel, A. Hernandez-Pellon, R. Aldaco, A. Irabien, Environmental sustainability assessment of the management of municipal solid waste incineration residus: a review of the current situation, Clean. Technol. Environ. Policy 17 (2015) 1333–1353, https://doi.org/10.1007/s10098-015-0961- 6. [14] A.A. Siyal, M.R. Shamsuddin, N.E. Rabat, M. Zulfiqar, Z. Man, A. Low, Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution, J. Clean. Prod. 229 (2019) 232–243, https://doi.org/10.1016/j. jclepro.2019.04.384. [15] Q. Li, S. Chen, Y. Zhang, Y. Hu, Q. Wang, Q. Zhou, Y. Yan, Y. Liu, D. Yan, Effect of curing temperature on high-strength metakaolin-based geopolymer composite (HMGC) with quartz powder and steel fibers, Materials 15 (11) (2022) 3958, https://doi.org/10.3390/ma15113958. [16] P. Sajan, T. Jiang, C. Lau, G. Tan, K. Ng, Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ashbasedgeopolymer, Clean. Mater. 1 (2021), 100002, https://doi.org/10.1016/j. clema.2021.100002. [17] S. Tome, M.A. Etoh, J. Etame, K. Sanjay, Characterization and leachability behaviour of geopolymer cement synthesised from municipal solid waste incinerator fly ash and volcanic ash blends, Recycling 3 (4) (2018) 50, https://doi. org/10.3390/recycling3040050. [18] B.A. Ionescu, A.M. Barbu, A.V. L˘az˘arescu, S. Rada, T. Gabor, C. Florean, The influence of substitution of fly ash with marble dust or blast furnace slag on the properties of the alkali-activated geopolymer paste, Coatings 13 (2) (2023) 403, https://doi.org/10.3390/coatings13020403. [19] M. Sivasakthi, R. Jeyalakshmi, Effect of change in the silica modulus of sodium silicate solution on the microstructure of fly ash geopolymers, J. Build. Eng. 44 (2021), 102939, https://doi.org/10.1016/j.jobe.2021.102939. [20] Z. Hajizadeh, F. Radinekiyan, R. Eivazzadeh-Keihan, A. Maleki, Development of novel and green NiFe2O4/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations, Sci. Rep. 10 (1) (2020) 11671, https://doi.org/10.1038/s41598-020-68426-z. [21] G.B. Singh, K.V. Subramaniam, Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash, Cem. Concr. Compos. 95 (2019) 10–18, https://doi.org/10.1016/j.cemconcomp.2018.10.010. [22] A.M. Al Bakria, H. Kamarudin, M. BinHussain, I.K. Nizar, Y. Zarina, A.R. Rafiza, The effect of curing temperature on physical and chemical properties of geopolymers, Phys. Procedia 22 (2011) 286–291, https://doi.org/10.1016/j. phpro.2011.11.045. [23] J.S.J. Sindhunata, Van Deventer, G.C. Lukey, H. Xu, Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization, Ind. Eng. Chem. Res. 45 (10) (2006) 3559–3568, https://doi.org/10.1021/ie051251p. [24] D. Liu, J. Yuan, J. Li, G. Zhang, Preparation of chitosan poly (methacrylate) composites for adsorption of bromocresol green, ACS Omega 4 (7) (2019) 12680–12686, https://doi.org/10.1021/acsomega.9b01576. [25] V.O. Shikuku, R. Zanella, C.O. Kowenje, Filipe F. Donato, Nelson Bandeira, O. D. Prestes, Single and binary adsorption of sulphonamide antibiotics onto ironmodified clay: linear and nonlinear Isotherms, Kinetics, thermodynamics and mechanistic studies, Appl. Water Sci. 8 (2018) 175, https://doi.org/10.1007/ s13201-018-0825-4. [26] S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetensk. Handingarl 24 (1898) 1–39. [27] Y. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451–465, https://doi.org/10.1016/S0032-9592(98) 00112-5. [28] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89 (1963) 31–60, https://doi.org/10.1061/ JSEDAI.0000430. [29] S. Liu, Y. Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, Q. Li, B. Huang, Z. Huang, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N, N-dimethyl dehydroabietylamine oxide, Chem. Eng. J. 248 (2014) 135–144, https://doi.org/10.1016/j.cej.2014.03.026. [30] C. Xiong, S. Wang, L. Zhang, Y. Li, Y. Zhou, J. Peng, Preparation of 2-aminothiazole- functionalized poly (glycidyl methacrylate) microspheres and their excellent gold ion adsorption properties, Polymers 10 (2) (2018) 159, https://doi.org/ 10.3390/polym10020159. [31] H. Saad, F.N. El-Dien, N.E. El-Gamel, A.S.A. Dena, Azo-functionalized superparamagnetic Fe 3 O 4 nanoparticles: an efficient adsorbent for the removal of bromocresol green from contaminated water, RSC Adv. 12 (39) (2022) 25487–25499, https://doi.org/10.1039/D2RA03476J. [32] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38 (11) (1916) 2221–2295, https://doi.org/10.2121/ ja02268a002. [33] H. Freundlich, Über die adsorption in losungen, Z. Phys. Chem. 57 (4) (1906) 385–470, https://doi.org/10.1515/zpch-1907-5723. [34] M.M. Dubinin, Generalization of the theory of volume filling of micropores to nonhomogeneous microporous structures, Carbon 23 (4) (1985) 373–380, https:// doi.org/10.1016/0008-6223(85090029-6. [35] M.I. Temkin, Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules, Zh. Fiz. Chim. 15 (1941) 296–332. [36] V.O. Shikuku, T. Mishra, Adsorption isotherm modelling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms, Appl. Water Sci. 11 (2021) 103, https://doi.org/10.1007/s13201-021-01440-2. [37] G. Tor˘gut, K. Demirelli, Comparative adsorption of different dyes from aqueous solutions onto polymer prepared by ROP: kinetic, equilibrium and thermodynamic studies, Arab. J. Sci. Eng. 43 (2018) 3503–3514, https://doi.org/10.1007/s13369- 017-2947-7. [38] R. Rakshit, E. Khatun, M. Pal, S. Talukdar, D. Mandal, P. Saha, K. Mandal, Influence of functional group of dye on the adsorption behaviour of CoFe 2 O 4 nano-hollow spheres, New J. Chem. 41 (17) (2017) 9095–9102, https://doi.org/10.1039/ C7NJ00941K. [39] I. Luttah, D. Onunga, V.O. Shikuku, B. Otieno, C. Kowenje, Removal of endosulfan from water by municipal waste incinerator fly ash based geopolymers: adsorption kinetics, isotherms, and thermodynamics, Front. Environ. Chem. 4 (2023) 1164372, https://doi.org/10.3389/fenvc.2023.1164372. [40] C.E. Onu, B.N. Ekwueme, P.E. Ohale, C.P. Onu, C.O. Asadu, C.C. Obi, O.O. Onu, Decolourization of bromocresol green dye solution by acid functionalized rice husk: artificial intelligence modeling, GA optimization, and adsorption studies, J. Hazard Mater. Adv. 9 (2023), 100224, https://doi.org/10.1016/j. hazadv.2022.100224. [41] M. Hmoudah, A. El-Qanni, S. Abuhatab, N.N. Marei, A. El-Hamouz, B.J. A. Tarboush, M. Di Serio, Competitive adsorption of Alizarin Red S and Bromocresol Green from aqueous solutions using brookite TiO2 nanoparticles: experimental and molecular dynamics simulation, Environ. Sci. Pollut. Res. 29 (51) (2022) 77992–78008, https://doi.org/10.1007/s11356-022-21368-7. en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/228
dc.description.abstract In this study, solid waste incinerator fly ash (SWI-FA) based geopolymer adsorbents were prepared by alkalination of hazardous SWI-FA and cured at different temperatures of 30 0C (GP30), 50 0C (GP50), 70 0C (GP70), and 90 0C (GP90). The geopolymers were applied as low-cost adsorbents for the removal of anionic bromocresol green (BCG) dye from water under varying conditions. The precursor and geopolymers were characterized by XRD, SEM-EDS, FT-IR, and point of zero charge (PZC). The geopolymers were morphologically different with varying chemical compositions. The kinetic data were best described by the pseudo second order model. The experimental equilibrium adsorption data were fitted to Langmuir, Freundlich, Temkin and Dubinin- Radushkevich-Kaganer adsorption isotherm models. The Langmuir monolayer maximum adsorption capacities increased consistently with curing temperature, from 41.70 mg/g to 515.5 mg/g for GP30 and GP90, respectively, a new benchmark for these materials for anionic dyes. The thermodynamic parameters, namely enthalpy (ΔH< 0), Gibbs free energy (ΔG< 0), entropy (ΔS > 0) and activation energy (Ea) indicated that the processes are spontaneous, exothermic, physical (Ea< 5kJ/mol and ΔH< 40kJ/mol) and enthalpy-driven. The adsorption mechanisms included strong electrostatic interactions and hydrogen bonding. The production of these geopolymers provides dual advantage of waste valorization with applications in depollution of water. en_US
dc.subject Geopolymers Solid waste incinerator fly ash Valorization Adsorption Dyes en_US
dc.title Valorization of solid waste incinerator fly ash by geopolymer production for removal of anionic bromocresol green dye from water: Kinetics, isotherms and thermodynamics studies en_US
dc.type Preprint en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account