dc.identifier.citation |
1] Feng Cao, Kenneth McEnaney, Gang Chen, Zhifeng Ren, A review of cermet-based spectrally selective solar absorbers, Energy Environ. Sci. 7 (5) (2014) 1615–1627. [2] Adam W Welch, Pawel P Zawadzki, Stephan Lany, Colin A Wolden, Andriy Zakutayev, Self-regulated growth and tunable properties of CuSbS2 solar absorbers, Sol. Energy Mater. Sol. Cells 132 (2015) 499–506. [3] James Puthussery, Sean Seefeld, Nicholas Berry, Markelle Gibbs, Matt Law, Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics, J. Am. Chem. Soc. 133 (4) (2011) 716–719. [4] Rachel Morrish, Rebecca Silverstein, Colin A. Wolden, Synthesis of stoichiometric FeS2 through plasma-assisted sulfurization of Fe2o3 nanorods, J. Am. Chem. Soc. 134 (43) (2012) 17854–17857. [5] Miguel Caban-Acevedo, Matthew S Faber, Yizheng Tan, Robert J Hamers, Song Jin, Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires, Nano Lett. 12 (4) (2012) 1977–1982. [6] Takashi Ikuno, Ryo Suzuki, Kosuke Kitazumi, Naoko Takahashi, Naohiko Kato, Kazuo Higuchi, SnS thin film solar cells with Zn 1- x Mg x O buffer layers, Appl. Phys. Lett. 102 (19) (2013) 193901. [7] Liang Fang, Jian Liu, Sheng Ju, Fengang Zheng, Wen Dong, Mingrong Shen, Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO 3 nanoparticles, Appl. Phys. Lett. 97 (24) (2010) 242501. [8] Lise Lahourcade, Naomi C Coronel, Kris T Delaney, Sujeet K Shukla, Nicola A Spaldin, Harry A Atwater, Structural and optoelectronic characterization of RF sputtered ZnSnN2, Adv. Mater. 25 (18) (2013) 2562–2566. [9] P.C. Quayle, K. He, J. Shan, K. Kash, Synthesis, lattice structure, and band gap of ZnSnN2, MRS Commun. 3 (2013) 135–138. [10] Brandon R. Sutherland, Solar materials find their band gap, Joule 4 (5) (2020) 984–985. [11] Hiroshi Yanagi, Janet Tate, Sangmoon Park, Cheol-Hee Park, Douglas A Keszler, P-type conductivity in wide-band-gap BaCuQF (Q=S, Se), Appl. Phys. Lett. 82 (17) (2003) 2814–2816. [12] H.J. Lewerenz, Development of copperindiumdisulfide into a solar material, Sol. Energy Mater. Sol. Cells 83 (4) (2004) 395–407. [13] Adam W Welch, Pawel P Zawadzki, Stephan Lany, Colin A Wolden, Andriy Zakutayev, Self-regulated growth and tunable properties of CuSbS2 solar absorbers, Sol. Energy Mater. Sol. Cells 132 (2015) 499–506. [14] Atahar Parveen, G. Vaitheeswaran, Exploring exemplary optoelectronic and charge transport properties of KCuX (X=Se, Te), Sci. Rep. 8 (1) (2018) 1–10. [15] Zhiyuan Xu, Cong Wang, Xuming Wu, Lei Hu, Yuqi Liu, Guoying Gao, Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations, Phys. Chem. Chem. Phys. 24 (5) (2022) 3296–3302. [16] Jinjie Gu, Lirong Huang, Shengzong Liu, Ultralow lattice thermal conductivity and high thermoelectric performance of monolayer KCuTe: a first principles study, RSC Adv. 9 (62) (2019) 36301–36307. [17] Wangping Xu, Rui Wang, Baobing Zheng, Xiaozhi Wu, Hu Xu, New family of two-dimensional ternary photoelectric materials, ACS Appl. Mater. Interfaces 11 (15) (2019) 14457–14462. [18] J.W. Cederberg, C.H. Anderson, N.F. Ramsey, Rotational magnetic moments, Phys. Rev. 136 (4A) (1964) A960. [19] M.J. Frisch, et al., Gaussian 03, revision c. 02 (Gaussian Inc., Wallingford, CT, 2004). JP Perdew, Y. Wang accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244–13249. [20] Chengwang Niu, Hao Wang, Ning Mao, Baibiao Huang, Yuriy Mokrousov, Ying Dai, Antiferromagnetic topological insulator with nonsymmorphic protection in two dimensions, Phys. Rev. Lett. 124 (6) (2020) 066401. [21] John P. Perdew, Yue Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (23) (1992) 13244. [22] Hendrik J. Monkhorst, James D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188. [23] Francis Dominic Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci |
en_US |