Kaimosi Friends University College Repository

Low Born e ective Charges, High Covalency and Strong Optical Activity in X2+ 3 Bi3􀀀��N3􀀀�� (X=Ca,Sr,Ba) inverse-perovskites

Show simple item record

dc.contributor.author Wakini, Jasmine
dc.contributor.author Songa, Carolyne
dc.contributor.author Chege, Stephen
dc.contributor.author .Saouma, Felix O
dc.contributor.author Wabululu, Elica
dc.contributor.author Nyawere, P.W.O
dc.contributor.author Odari, Victor
dc.contributor.author Sifuna, James
dc.contributor.author Manyali, George S.
dc.date.accessioned 2023-04-04T07:08:22Z
dc.date.available 2023-04-04T07:08:22Z
dc.date.issued 2022-03
dc.identifier.citation 1 Y. Wang, H. Zhang, J. Zhu, X. L u, S. Li, R. Zou, and Y. Zhao, Advanced Materials 32, 1905007 (2020). 2 M. Ochi and K. Kuroki, Phys. Rev. Applied 12, 034009 (2019). 3 A. Pertsova, R. M. Geilhufe, M. Bremholm, and A. V. Balatsky, Phys. Rev. B 99, 205126 (2019). 4 M. Chepkoech, D. P. Joubert, and G. O. Amolo, Computational Condensed Matter 24, e00484 (2020). 5 T. Kariyado and M. Ogata, Journal of the Physical Society of Japan 80, 083704 (2011). 6 T. Kariyado and M. Ogata, Phys. Rev. Materials 1, 061201 (2017). 7 T. Kaur and M. Sinha, Materials Today Communications , 101741 (2020). 8 J. Nuss, C. M uhle, K. Hayama, V. Abdolazimi, and H. Takagi, Acta Crystallographica Section B 71, 300 (2015). 11 9 E. Dagotto, Science 318, 1076 (2007). 10 J. Zhu, Y. Wang, S. Li, J. W. Howard, J. Neuefeind, Y. Ren, H. Wang, C. Liang, W. Yang, R. Zou, C. Jin, and Y. Zhao, Inorganic Chemistry 55, 5993 (2016). 11 K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, and T. Kanomata, Phys. Rev. B 63, 024426 (2000). 12 B. S. Wang, P. Tong, Y. P. Sun, L. J. Li, W. Tang, W. J. Lu, X. B. Zhu, Z. R. Yang, and W. H. Song, Applied Physics Letters 95, 222509 (2009). 13 S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, Phys. Rev. Lett. 101, 205901 (2008). 14 Y. Nakamura, K. Takenaka, A. Kishimoto, and H. Takagi, Journal of the American Ceramic Society 92, 2999 (2009). 15 Z. Hui, X. Tang, D. Shao, H. Lei, J. Yang, W. Song, H. Luo, X. Zhu, and Y. Sun, Chem. Commun. 50, 12734 (2014). 16 J. C. Lin, P. Tong, W. Tong, S. Lin, B. S. Wang, W. H. Song, Y. M. Zou, and Y. P. Sun, Applied Physics Letters 106, 082405 (2015). 17 D. D. Vaughn II, J. Araujo, P. Meduri, J. F. Callejas, M. A. Hickner, and R. E. Schaak, Chemistry of Materials 26, 6226 (2014). 18 K. Takenaka, T. Hamada, T. Shibayama, and K. Asano, Journal of Alloys and Compounds 577, S291 (2013). 19 Y. Fang and J. Cano, Phys. Rev. B 101, 245110 (2020). 20 Y. Zhao and L. L. Daemen, Journal of the American Chemical Society 134, 15042 (2012). 21 H. A. Evans, Y. Wu, R. Seshadri, and A. K. Cheetham, Nature Reviews Materials 5, 196 (2020). 22 I. Ullah, G. Murtaza, R. Khenata, A. Mahmood, M. Muzzamil, N. Amin, and M. Saleh, Journal of Electronic Materials 45, 3059 (2016). 23 M. Ochi and K. Kuroki, Phys. Rev. Applied 12, 034009 (2019). 24 Y. Mochizuki, H.-J. Sung, A. Takahashi, Y. Kumagai, and F. Oba, Phys. Rev. Materials 4, 044601 (2020). 25 J. M. Soler, E. Artacho, J. D. Gale, A. Garc a, J. Junquera, P. Ordej on, and D. S anchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). 26 J. L. Bao, L. Gagliardi, and D. G. Truhlar, The Journal of Physical Chemistry Letters 9, 2353 (2018), pMID: 29624392. 27 M. A. Mosquera, C. H. Borca, M. A. Ratner, and G. C. Schatz, The Journal of Physical Chemistry A 120, 1605 (2016). 28 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991). 29 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 30 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 31 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 32 K. A. Johnson and N. W. Ashcroft, Phys. Rev. B 58, 15548 (1998). 33 A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, The Journal of Chemical Physics 125, 224106 (2006). 34 A. Garc a, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerd a, F. Corsetti, R. Cuadrado, V. Dikan, J. Ferrer, J. Gale, P. Garc a-Fern andez, V. M. Garc a-Su arez, S. Garc a, G. Huhs, S. Illera, R. Koryt ar, P. Koval, I. Lebedeva, L. Lin, P. L opez-Tarifa, S. G. Mayo, S. Mohr, P. Ordej on, A. Postnikov, Y. Pouillon, M. Pruneda, R. Robles, D. S anchez-Portal, J. M. Soler, R. Ullah, V. W. z. Yu, and J. Junquera, The Journal of Chemical Physics 152, 204108 (2020). 35 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991). 36 L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982). 37 J. Junquera, M. Zimmer, P. Ordej on, and P. Ghosez, Phys. Rev. B 67, 155327 (2003). 38 S. Chege, P. Ning'i, J. Sifuna, and G. O. Amolo, AIP Advances 10, 095018 (2020). 39 P. Ning'i, S. Chege, J. Sifuna, and G. Amolo, (2020), arXiv:2009.02529 [cond-mat.mtrl-sci]. 40 J. Sifuna, G. S. Manyali, E. Wabululu, C. Songa, A. Otieno, and S. Sironik, (2020), arXiv:2001.01488 [physics.comp-ph]. 41 O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 (1989). 42 E. Artacho, D. S anchez-Portal, P. Ordej on, A. Garc a, and J. M. Soler, Phys. Status Solidi (b) 215, 809 (1999). 43 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). 44 R. M. Tromer, L. C. Felix, C. F. Woellner, and D. S. Galvao, Chemical Physics Letters 763, 138210 (2021). 45 R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993). 46 F. D. Murnaghan, Proceedings of the National Academy of Sciences 30, 244 (1944). 47 G. S. Manyali and J. Sifuna, AIP Advances 9, 125029 (2019). 48 D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Strei er, and J.-M. Triscone, Annual Review of Materials Research 37, 589 (2007). 49 S. Iqbal, G. Murtaza, R. Khenata, A. Mahmood, A. Yar, M. Muzammil, and M. Khan, Journal of Electronic Materials 45, 4188 (2016). 50 F. G abler, M. Kirchner, W. Schnelle, U. Schwarz, M. Schmitt, H. Rosner, and R. Niewa, Zeitschrift f ur anorganische und allgemeine Chemie 630, 2292 (2004). 51 P. Ghosez, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998). 52 P. Ghosez, First-principles study of the dielectric and dynamical properties of barium titanate, Ph. d. thesis, Universiti e Catholique de Louvain (1997), available on-line in http://www.phythema.ulg.ac.be/Books/PhDPh. Ghosez.pdf. 53 M. T. Rahman, E. Haque, and M. A. Hossain, Journal of Alloys and Compounds 783, 593 (2019). 54 P. Muchiri, V. Mwalukuku, K. Korir, G. Amolo, and N. Makau, Materials Chemistry and Physics 229, 489 (2019). 55 X.-Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011). 56 M. Born, Mathematical Proceedings of the Cambridge Philosophical Society 36, 160{172 (1940). 57 R. Hill, 65, 349 (1952). 58 T. S. Moss, physica status solidi (b) 131, 415 (1985). 59 P. Garc a-Fern andez, J. C. Wojde l, J. I~niguez, and J. Junquera, Phys. Rev. B 93, 195137 (2016). 60 J. Sifuna, P. Garc a-Fern andez, G. S. Manyali, G. Amolo, and J. Junquera, MRS Advances 5, 2281{2290 ( en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/166
dc.description.abstract We compute for the rst time a complete charge analysis (Bader and Born e ective) on X2+ 3 Bi3􀀀N3􀀀 (X=Ca,Sr,Ba). The crystals show a great electron sharing with little possibility of ferroelectricity. Inverse perovskites have been a center of attraction in the recent years and not much is known on the systems under this study. This research addressed some key missing components and decomponents like the hardness and optical spectrum in X2+ 3 Bi3􀀀N3􀀀 (X=Ca,Sr,Ba). The computed lattices slightly deviated from the parent perovskites indicating a future interfacing under a proper substrate. We also found out that all the crystals under this study were semiconducting with direct band gaps but plastic in nature due to strong covalency. The optical spectrum revealed very strong activity in these crystals in the ultraviolet regime. The information herein will de nitely guide the experimentalist in fabrication of these materials for novel functionalities. en_US
dc.description.sponsorship Masinde Muliro University of Science and Technology Grant No. MMU/URF/2022/1-026. en_US
dc.language.iso en en_US
dc.title Low Born e ective Charges, High Covalency and Strong Optical Activity in X2+ 3 Bi3􀀀��N3􀀀�� (X=Ca,Sr,Ba) inverse-perovskites en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account