Kaimosi Friends University Repository

A DFT study of mechanical properties of hcp rhenium

Show simple item record

dc.contributor.author Manyali, George S.
dc.date.accessioned 2022-10-11T11:15:56Z
dc.date.available 2022-10-11T11:15:56Z
dc.date.issued 2021-10-23
dc.identifier.citation [1] M. de Jong, D. L. Olmsted, A. van de Walle, M. Asta, Physical Review B 86 (22) (2012) 224101. [2] J.-C. Carlen, B. D. Bryskin, MATERIAL AND MANUFACTURING PROCESS 9 (6) (1994) 1087– 1104. [3] I. E. Campbell, D. Rosenbaum, B. Gonser, Journal of the Less Common Metals 1 (3) (1959) 185–191. [4] J. Tse, Journal of Superhard Materials 32 (3) (2010) 177–191. [5] V. V. Brazhkin, V. L. Solozhenko, arXiv preprint arXiv:1811.09503. [6] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., Journal of physics: Condensed matter 21 (39) (2009) 395502. [7] W. Kohn, L. J. Sham, Physical review 140 (4A) (1965) A1133. [8] M. Palumbo, A. Dal Corso, physica status solidi (b) 254 (9). [9] J. P. Perdew, A. Zunger, Physical Review B 23 (10) (1981) 5048. [10] A. Dal Corso, Computational Materials Science 95 (2014) 337–350. 5 [11] F. Murnaghan, Proceedings of the national academy of sciences of the United States of America 30 (9) (1944) 244. [12] R. W. G. Wycko , Krieger, 1964. [13] C. Kittel, et al., Introduction to solid state physics, Vol. 8, Wiley New York, 1976. [14] M. Born, K. Huang, Dynamical theory of crystal, Clarendon press, 1954. [15] R. Hill, Proceedings of the Physical Society. Section A 65 (5) (1952) 349. [16] G. Steinle-Neumann, L. Stixrude, R. E. Cohen, Physical Review B 60 (2) (1999) 791. [17] M.-B. Lv, Y. Cheng, Y.-Y. Qi, G.-F. Ji, C.-G. Piao, Physica B: Condensed Matter 407 (4) (2012) 778– 783. [18] K. Katahara, M. Manghnani, E. Fisher, Journal of Physics F: Metal Physics 9 (5) (1979) 773. [19] G. Simmons, Single crystal elastic constants and calculated aggregate properties, Tech. rep., SOUTHERN METHODIST UNIV DALLAS TEX (1965). [20] X. Liu, Y.-Y. Chang, S. N. Tkachev, C. R. Bina, S. D. Jacobsen, Scientific reports 7 (2017) 42921. [21] G. S. Manyali, R. Warmbier, A. Quandt, J. E. Lowther, Computational Materials Science 69 (2013) 299–303. [22] S. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (367) (1954) 823–843. [23] X.-Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19 (9) (2011) 1275–1281. [24] O. L. Anderson, Journal of Physics and Chemistry of Solids 24 (7) (1963) 909–917. 6 en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/139
dc.description.abstract In the present paper, hcp Re was investigated in terms of its structural, elastic, mechanical and thermodynamic properties using density-functional theory (DFT). The local density approximation was employed for the exchange correlation potential together with a spin-orbit coupling. The computed lattice constant was found to be in agreement with the available experimental and theoretical results. The elastic constants were also calculated and used to determine mechanical properties like Young’s modulus (Y), the shear modulus (G), Poisson’s ratio (n) and Vicker’s hardness. From thermodynamic investigations, the heat capacity and entropy were also predicted. Although the predicted bulk modulus of Re is comparable to that of diamond, the Vickers hardness was found to be five times less than that of a diamond. Hence, Re is typical solid with high bulk modulus but low Vicker’s hardness en_US
dc.description.sponsorship Work was supported by African Laser Centre Research Grant No. LHIN500 Task ALC-R005. Computational resources were provided by CHPC, South Africa en_US
dc.language.iso en en_US
dc.subject Elastic constants, Vickers hardness, bulk modulus, rhenium en_US
dc.title A DFT study of mechanical properties of hcp rhenium en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account