Kaimosi Friends University Repository

Enhanced hexazinone degradation by a Bacillus species and Staphylococcus species isolated from pineapple and sugarcane cultivated soils in Kenya

Show simple item record

dc.contributor.author Muendo, Boniface Mbithi
dc.contributor.author Shikuku, Victor Odhiambo
dc.contributor.author Getenga, Zachary Moranga
dc.contributor.author Lalah, Joseph Owuor
dc.contributor.author Wandiga, Shem Oyoo
dc.contributor.author Karau, Geoffrey Muriira
dc.contributor.author Rothballerf, Michael
dc.date.accessioned 2022-04-07T09:19:15Z
dc.date.available 2022-04-07T09:19:15Z
dc.date.issued 2022-02-12
dc.identifier.citation [1] Vera Silva, Hans G.J.Mol, Paul Zomer, Marc Tienstra, Coen J. Ritsema, Violette Geissen, Pesticide residues in European agricultural soils – a hidden reality unfolded, Sci. Total Environ. 653 (25) (2019) 1532–1545. [2] B.M. Mbithi, V.O. Shikuku, Z.M. Getenga, J.O. Lalah, S.O. Wandiga, M. Rothballer, Adsorption-desorption and leaching behavior of diuron on selected Kenyan agricultural soils, Heliyon 7 (2) (2021) e06073. [3] Kassio Ferreira Mendes, Marcelo Chan Fu Wei, Ivan Ferreira Furtado, Vanessa Takeshita, Joao Pedro Pissolito, Jose PauloMolin, Valdemar Luiz Tornisielo, Spatial distribution of sorption and desorption process of 14C-radiolabelled hexazinone and tebuthiuron in tropical soil, Chemosphere 264 (2021) 128494. [4] D.L. Shaner, Herbicide Handbook, Tenth ed Weed Science Society of America, Lawrence, KS, 2014 p. 513. [5] Tahereh Jasemizad, Lokesh P. Padhye, Simultaneous analysis of betrixaban and hexazinone using liquid chromatography/tandem mass spectrometry in aqueous solutions, MethodsX 6 (2019) 1863–1870. [6] I. El-Nahhal, Y. El-Nahhal, Pesticide residues in drinking water, their potential risk to human health and removal options, J. Environ. Manag. 299 (2021) 113611, https:// doi.org/10.1016/j.jenvman.2021.113611. [7] J.O. Lalah, B.M. Muendo, Z.M. Getenga, The dissipation of hexazinone in tropical soils under semi-controlled field conditions in Kenya, J. Environ. Sci. Health B 44 (7) (2009) 690–696. [8] D.J. Agoro, C.O. Kowenje, J.O. Lalah, E.T. Osewe, J.A. Ogunah, Effects of zeolite X on dissipation of Hexazinone from agricultural waste waters in Western Kenya, Int. J. Eng. Res. Technol. 02 (10) (2013). [9] B.M. Muendo, J.O. Lalah, Z.M. Getenga, Behavior of pesticide residues in agricultural soil and adjacent River Kuywa sediment and water samples from Nzoia sugarcane belt in Kenya, Environmentalist 25 (2012) 433–447. [10] F.J. Kandie, M. Krauss, L. Beckers, R. Massei, U. Fillinger, J. Becker, M. Liess, B. Torto, W. Brack, Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya, Sci. Total Environ. 714 (2020) 136748, https://doi.org/10.1016/j.scitotenv.2020.136748. [11] Z.M. Getenga, S.O. Wandiga, F.O. Kengara, Determination of organochlorine pesticide residues in soil and water from river Nyando drainage system within Lake Victoria Basin in Kenya, Bull. Environ. Contam. Toxicol. 72 (2) (2004) 335–343. [12] L. Pang, M. Close, M. Flintoft, Degradation and sorption of atrazine, hexazinone and procycymidone in coastal sand acquifer media, Pest Manag. Sci. 61 (2005) 133–143. [13] KESREF, Report on Research Programmes, KIBWOS station, Kenya, 2009. [14] A.C.D. Guimarães, K.F. Mendes, F.C. dos Reis, et al., Role of soil physicochemical properties in quantifying the fate of diuron, hexazinone, andmetribuzin, Environ. Sci. Pollut. Res. 25 (2018) 12419–12433. [15] X. Wang, H. Wang, C. Tan, Degradation and metabolism of hexazinone by two isolated bacterial strains from soil, Chemosphere 61 (2006) 1468–1474. [16] A. Ngigi, Z.M. Getenga, B. Hamadi, P. Ndulat, Isolation and identification of hexazinone degrading bacterium from sugarcane-cultivated soils in Kenya, Bull. Environ. Contam. Toxicol. 92 (2014) 644–648. [17] Z.M. Getenga, U. Dorfler, A. Iwobi, M. Schmid, R. Schroll, Atrazine and terbuthylazine mineralization by an Arthrobacter sp. isolated from a sugarcane-cultivated soil in Kenya, Chemosphere 77 (4) (2009) 534–539. [18] D. Synal, G. Kulshrestha, Metabolism of metolachlor by fungal cultures, J. Agric. Food Chem. 50 (2002) 499–505. [19] F.Y. Mostafa, C.S. Heilling, Isolation and 16S DNA characterization of soil microorganisms from tropical soils capable of utilizing the herbicides hexazinone and tebuthiuron, J. Environ. Sci. Health B 38 (6) (2003) 783–797. [20] W. Xuedong, W. Huili, T. Chengxia, Degradation and metabolism of hexazinone by two isolated bacterial strains from soil, Chemosphere 61 (10) (2005) 1468–1474. [21] M.L. Viti, K.F. Mendes, F.C. dos Reis, et al., Characterization and metabolism of bound residues of three herbicides in soils amended with sugarcane waste, Sugar Tech 23 (2021) 23–37, https://doi.org/10.1007/s12355-020-00884-1. [22] P.M. Dellamatrice, R.T.R. Monteiro, Isolation of diuron degrading bacteria from treated soil, Braz. Arch. Biol. Technol. 47 (2004) 999–1003. [23] X.M. Wu, Y. Yu, M. Li, Y. Long, H. Fang, N. Li, Prediction of bioavailability of chlorpyrifos degrading Bacillus licheniformis (ZHU-Ia), Afr. J. Microbiol. Res. 4 (22) (2011) 2410–2413. [24] B.M. Muendo, V. Shikuku, J. Lalah, Z. Getenga, Wandiga Shem, M. Rothballer, Enhanced degradation of diuron by two Bacillus species isolated from diuron contaminated sugarcane and pineapple-cultivated soils in Kenya, Appl. Soil Ecol. 157 (2021) 103721, https://doi.org/10.1016/j.apsoil.2020.103721. [25] L. Rastegarzadeh, Y. Nelson, Bio-treatment of synthetic drill-cutting waste in soil, Remediation of Chlorinated and Recalcitrant Compounds. Proceedings of the fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds Monterey, CA, Battelle Press, Columbus, OH, 2006 , May 2006. ISBN 1-57477-157-4 www.battelle.org/bookstore. [27] J.G. Cappuccino, N. Sherman, Microbiology. A Laboratory Manual, Benjamin Cummings Publishing Company, Menlo Park, CA, 2002. [28] Y.Z. Zhang, W.F. Chen, M. Li, X.H. Sui, H.C. Liu, X.X. Zhang, W.X. Chen, Bacillus endoradicis sp. nov.an endophytic bacterium isolated from soybean root, J. Syst. Evol. Microbiol. 62 (2012) 359–363. [29] E. Pruesse, C. Quast, K. Knittel, B.M. Fuchs,W. Ludwig, J. Peplies, F.O. Glockner, SILVA. A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acids Res. 35 (2007) 7188–7196. [30] J. Sambrook, D. Russell, Molecular Cloning. A Laboratory Manual, 3rd edn Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001 5.4. [31] M. Sharma, M. Schmid, M. Rothballer, G. Hause, A. Zuccaro, J. Imani, P. Kampfer, E. Domann, P. Schafer, A. Hartmann, K.H. Kogel, Detection and identification of bacteria intimately associated with fungi of the order Sebacinales, Cell. Microbiol. 10 (2008) 2235–2246. [32] W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, A. Buchner, L.T. Yadhukumar, S. Steppi, G. Jobb, W. Forster, I. Brettskel, S. Gerber, A.G. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lubmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckman, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, K.H. Schleifer, ARB: a software environment for sequence data, Nucleic Acids Res. 32 (2004) 1363–1371. [33] Daojun Yu, C. Yueming, P. Yunjeng, L. Haijing, A.M. Melinda, Y. Yi-wei, Staphylococcus gallinarium Bacteremia in a patient with chronic hepatitis B virus infection, J. Ann. Clin. Lab. Sci. 38 (4) (2008) 401–404. [34] A. Ngigi, Z.M. Getenga, B. Hamadi, P. Ndula, Biodegradation of s-triazine herbicide atrazine by Enterobacter cloacae and Burkholderia cepacia sp. from long-term treated sugarcane-cultivated soils in Kenya, J. Environ. Sci. Health B 47 (2012) 769–778. en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/133
dc.description.abstract In this work, hexazinone-degrading bacterial strains from Kenyan tropical soils with long termapplication history were isolated and identified. Non-sterile soils from sugarcane and pineapple cultivated fields with over 15 years' hexazinone application history degraded 82.2% and 93.4% initially applied hexazinone under laboratory conditions after 146 days of incubation, respectively. In contrast, non-sterile soils without history of application degraded 48.8% and 36.8% of hexazinone after 146 days, respectively. From liquid culture tests, using soils with prior application history from sugarcane and pineapple cultivated soils, two hexazinone-degrading bacterial strains were isolated and identified as Staphylococcus gallinarum and Bacillus toyonensis and Bacillus thuringiensis, respectively. The pure isolates rapidly degraded hexazinone up to 38.4%and 53.2%of 50mg/L in 46 days, respectively, with microbial hexazinone metabolite B previously reported detected. These bacterial strains from Kenyan soils have been identified for the first time as prospective hexazinone-degraders from pineapple and sugarcane-cultivated soils. en_US
dc.language.iso en en_US
dc.publisher KeAi en_US
dc.subject Hexazinone Biodegradation Staphylococcus Bacillus en_US
dc.title Enhanced hexazinone degradation by a Bacillus species and Staphylococcus species isolated from pineapple and sugarcane cultivated soils in Kenya en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account